Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Band engineered epitaxial 3D GaN-InGaN core-shell rod arrays as an advanced photoanode for visible-light-driven water splitting.

Identifieur interne : 000238 ( Main/Exploration ); précédent : 000237; suivant : 000239

Band engineered epitaxial 3D GaN-InGaN core-shell rod arrays as an advanced photoanode for visible-light-driven water splitting.

Auteurs : RBID : pubmed:24517402

Abstract

3D single-crystalline, well-aligned GaN-InGaN rod arrays are fabricated by selective area growth (SAG) metal-organic vapor phase epitaxy (MOVPE) for visible-light water splitting. Epitaxial InGaN layer grows successfully on 3D GaN rods to minimize defects within the GaN-InGaN heterojunctions. The indium concentration (In ∼ 0.30 ± 0.04) is rather homogeneous in InGaN shells along the radial and longitudinal directions. The growing strategy allows us to tune the band gap of the InGaN layer in order to match the visible absorption with the solar spectrum as well as to align the semiconductor bands close to the water redox potentials to achieve high efficiency. The relation between structure, surface, and photoelectrochemical property of GaN-InGaN is explored by transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS), Auger electron spectroscopy (AES), current-voltage, and open circuit potential (OCP) measurements. The epitaxial GaN-InGaN interface, pseudomorphic InGaN thin films, homogeneous and suitable indium concentration and defined surface orientation are properties demanded for systematic study and efficient photoanodes based on III-nitride heterojunctions.

DOI: 10.1021/am4058937
PubMed: 24517402

Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Band engineered epitaxial 3D GaN-InGaN core-shell rod arrays as an advanced photoanode for visible-light-driven water splitting.</title>
<author>
<name sortKey="Caccamo, Lorenzo" uniqKey="Caccamo L">Lorenzo Caccamo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute for Semiconductor Technology, TU Braunschweig , Hans-Sommer-Strasse 66, Braunschweig 38106, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute for Semiconductor Technology, TU Braunschweig , Hans-Sommer-Strasse 66, Braunschweig 38106</wicri:regionArea>
<wicri:noRegion>38106</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hartmann, Jana" uniqKey="Hartmann J">Jana Hartmann</name>
</author>
<author>
<name sortKey="Fabrega, Cristian" uniqKey="Fabrega C">Cristian Fàbrega</name>
</author>
<author>
<name sortKey="Estrade, Sonia" uniqKey="Estrade S">Sonia Estradé</name>
</author>
<author>
<name sortKey="Lilienkamp, Gerhard" uniqKey="Lilienkamp G">Gerhard Lilienkamp</name>
</author>
<author>
<name sortKey="Prades, Joan Daniel" uniqKey="Prades J">Joan Daniel Prades</name>
</author>
<author>
<name sortKey="Hoffmann, Martin W G" uniqKey="Hoffmann M">Martin W G Hoffmann</name>
</author>
<author>
<name sortKey="Ledig, Johannes" uniqKey="Ledig J">Johannes Ledig</name>
</author>
<author>
<name sortKey="Wagner, Alexander" uniqKey="Wagner A">Alexander Wagner</name>
</author>
<author>
<name sortKey="Wang, Xue" uniqKey="Wang X">Xue Wang</name>
</author>
<author>
<name sortKey="Lopez Conesa, Lluis" uniqKey="Lopez Conesa L">Lluis Lopez-Conesa</name>
</author>
<author>
<name sortKey="Peir, Francesca" uniqKey="Peir F">Francesca Peiró</name>
</author>
<author>
<name sortKey="Rebled, Jose Manuel" uniqKey="Rebled J">José Manuel Rebled</name>
</author>
<author>
<name sortKey="Wehmann, Hergo Heinrich" uniqKey="Wehmann H">Hergo-Heinrich Wehmann</name>
</author>
<author>
<name sortKey="Daum, Winfried" uniqKey="Daum W">Winfried Daum</name>
</author>
<author>
<name sortKey="Shen, Hao" uniqKey="Shen H">Hao Shen</name>
</author>
<author>
<name sortKey="Waag, Andreas" uniqKey="Waag A">Andreas Waag</name>
</author>
</titleStmt>
<publicationStmt>
<date when="2014">2014</date>
<idno type="doi">10.1021/am4058937</idno>
<idno type="RBID">pubmed:24517402</idno>
<idno type="pmid">24517402</idno>
<idno type="wicri:Area/Main/Corpus">000160</idno>
<idno type="wicri:Area/Main/Curation">000160</idno>
<idno type="wicri:Area/Main/Exploration">000238</idno>
</publicationStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">3D single-crystalline, well-aligned GaN-InGaN rod arrays are fabricated by selective area growth (SAG) metal-organic vapor phase epitaxy (MOVPE) for visible-light water splitting. Epitaxial InGaN layer grows successfully on 3D GaN rods to minimize defects within the GaN-InGaN heterojunctions. The indium concentration (In ∼ 0.30 ± 0.04) is rather homogeneous in InGaN shells along the radial and longitudinal directions. The growing strategy allows us to tune the band gap of the InGaN layer in order to match the visible absorption with the solar spectrum as well as to align the semiconductor bands close to the water redox potentials to achieve high efficiency. The relation between structure, surface, and photoelectrochemical property of GaN-InGaN is explored by transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS), Auger electron spectroscopy (AES), current-voltage, and open circuit potential (OCP) measurements. The epitaxial GaN-InGaN interface, pseudomorphic InGaN thin films, homogeneous and suitable indium concentration and defined surface orientation are properties demanded for systematic study and efficient photoanodes based on III-nitride heterojunctions.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="In-Process">
<PMID Version="1">24517402</PMID>
<DateCreated>
<Year>2014</Year>
<Month>02</Month>
<Day>28</Day>
</DateCreated>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1944-8252</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>6</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2014</Year>
<Month>Feb</Month>
<Day>26</Day>
</PubDate>
</JournalIssue>
<Title>ACS applied materials & interfaces</Title>
<ISOAbbreviation>ACS Appl Mater Interfaces</ISOAbbreviation>
</Journal>
<ArticleTitle>Band engineered epitaxial 3D GaN-InGaN core-shell rod arrays as an advanced photoanode for visible-light-driven water splitting.</ArticleTitle>
<Pagination>
<MedlinePgn>2235-40</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/am4058937</ELocationID>
<Abstract>
<AbstractText>3D single-crystalline, well-aligned GaN-InGaN rod arrays are fabricated by selective area growth (SAG) metal-organic vapor phase epitaxy (MOVPE) for visible-light water splitting. Epitaxial InGaN layer grows successfully on 3D GaN rods to minimize defects within the GaN-InGaN heterojunctions. The indium concentration (In ∼ 0.30 ± 0.04) is rather homogeneous in InGaN shells along the radial and longitudinal directions. The growing strategy allows us to tune the band gap of the InGaN layer in order to match the visible absorption with the solar spectrum as well as to align the semiconductor bands close to the water redox potentials to achieve high efficiency. The relation between structure, surface, and photoelectrochemical property of GaN-InGaN is explored by transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS), Auger electron spectroscopy (AES), current-voltage, and open circuit potential (OCP) measurements. The epitaxial GaN-InGaN interface, pseudomorphic InGaN thin films, homogeneous and suitable indium concentration and defined surface orientation are properties demanded for systematic study and efficient photoanodes based on III-nitride heterojunctions.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Caccamo</LastName>
<ForeName>Lorenzo</ForeName>
<Initials>L</Initials>
<Affiliation>Institute for Semiconductor Technology, TU Braunschweig , Hans-Sommer-Strasse 66, Braunschweig 38106, Germany.</Affiliation>
</Author>
<Author ValidYN="Y">
<LastName>Hartmann</LastName>
<ForeName>Jana</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Fàbrega</LastName>
<ForeName>Cristian</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Estradé</LastName>
<ForeName>Sonia</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lilienkamp</LastName>
<ForeName>Gerhard</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Prades</LastName>
<ForeName>Joan Daniel</ForeName>
<Initials>JD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hoffmann</LastName>
<ForeName>Martin W G</ForeName>
<Initials>MW</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ledig</LastName>
<ForeName>Johannes</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wagner</LastName>
<ForeName>Alexander</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Xue</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lopez-Conesa</LastName>
<ForeName>Lluis</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Peiró</LastName>
<ForeName>Francesca</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rebled</LastName>
<ForeName>José Manuel</ForeName>
<Initials>JM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wehmann</LastName>
<ForeName>Hergo-Heinrich</ForeName>
<Initials>HH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Daum</LastName>
<ForeName>Winfried</ForeName>
<Initials>W</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Shen</LastName>
<ForeName>Hao</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Waag</LastName>
<ForeName>Andreas</ForeName>
<Initials>A</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType>Journal Article</PublicationType>
<PublicationType>Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>02</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>ACS Appl Mater Interfaces</MedlineTA>
<NlmUniqueID>101504991</NlmUniqueID>
<ISSNLinking>1944-8244</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2014</Year>
<Month>2</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>2</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>2</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>2</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1021/am4058937</ArticleId>
<ArticleId IdType="pubmed">24517402</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV2/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000238 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000238 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV2
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24517402
   |texte=   Band engineered epitaxial 3D GaN-InGaN core-shell rod arrays as an advanced photoanode for visible-light-driven water splitting.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24517402" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a IndiumV2 

Wicri

This area was generated with Dilib version V0.5.76.
Data generation: Tue May 20 07:24:43 2014. Site generation: Thu Mar 7 11:12:53 2024